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ANALYSIS OF THICK RECTANGULAR PLATES LAMINATED
OF BIMODULUS COMPOSITE MATERIALS

i
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A mixed finite-element analysis is presented for static be-
havior of rectangular plates having finite transverse shear moduli
and different elastic properties depending upon whether or not the
fiber-direction strains are tensile or compressive. As a benchmark
to evaluate the validity and accuracy of the finite-element analysis,
a closed-form solution is presented for the particular case of an
unsymmetric-cross-ply piate having freely supported edges and sub-

jected to a sinusoidally distributed normal-pressure loading.
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Nomenclature

stretching stiffnesses for transversely isotropic and cross-
ply orthotropic plates

plate dimensions in x and y directions

bending-stretching coupling stiffnesses for transversely
isotropic and cross-ply orthotropic plates

coefficients defined in Eqs. (15)

bending stiffnesses for transversely isotropic and cross-ply
orthotropic plates

a(  )/ax

compressive and tensile Young's moduli for transversely
isotropic bimodulus material

fiber and matrix Young's moduli

Young's moduli in directions x,y,z

generalized force components defined in Eqs. (20)

longitudinal-thickness and transverse-thickness shear moduli
of orthotropic material

thickness-shear moduli for transversely isotropic bimodulus material

total thickness of plate

shear-correction coefficient for transversely isotropic plate

shear-correction coefficients for cross-ply orthotropic plate

matrix coefficients defined in Egs. (20)

linear differential operators defined in Egs. (8) gg‘sméizax
stress couples and inplane stress resultants Jurtx:ruoed
i cition

interpolation function at node i

number of nodes per element
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QC,Qt = compressive and tensile plane-stress-reduced stiffnesses for

isotropic bimodulus material

Qx,Qy = thickness-shear stress resultants

Qijkz = plane-stress-reduced stiffnesses for orthotropic bimodulus material
9,9, = normal pressure and its peak value

S’Sij = thickness-shear stiffnesses for transversely isotropic and cross-

ply orthotropic plates

| Sij = matrix coefficients defined in Egs. (20) ;
u,V,W = midplane displacement coefficients (amplitudes of u°,v°,w°) ;
U,V,W = displacements in x,y,z directions é
u°,v°,wo = midplane displacements in x,y,z directions E:
Vf,VF = fiber volume fraction and effective fiber volume fraction %i
XY = bending-slope coefficients (amplitudes of wx,wy) %
XsYs2 = plate coordinates in longitudinal, transverse, and downward i%
thickness directions

Z,Zx,Zy = zn/h, znx/h, zny/h
z, = neutral-surface position for isotropic square plate
znx,zny = neutral-surface positions associated with ex=0 and ey=0
asB = n/a, /b

; sj.eg = strain component at arbitrary location and at midplane

é K = curvature component

§ T = fiber and matrix Poisson's ratios

El viz,v23 = major (longitudinal-transverse) and transverse-thickness Poisson's

: ratios
9 = stress component

PP S




°e’°e = typical variable in general and its value at node i
Wx’wy = bending slopes in xz and yz planes

) Pt TR Y

Subscripts:

i, = 1,2,6 contracted indices

k = 1(t or tension), 2(c or compression)

L = layer number

Introduction

The increasing use of composite materials in structures has led to the
requirement of more realistic mathematical modeling of the material behavior
and incorporation of this more realistic model into structural analyses. It
has been found that certain fiber-reinforced materials, especially those with
very soft matrices (for example, cord-rubber composites), exhibit quite dif-
ferent elastic behavior depending upon whether the fiber-direction strain is
tensile or compressivel~3. As a first approximation, the stress-strain be-
havior of such materials is often represented as being bilinear, with differ-
ent slopes (elastic properties) depending upon the sign of the fiber-direction
strain. Such a material is called a bimodulus composite material, and it has
been shown that the fiber-governed symmetric-compliance model proposed in
Ref. 4 agrees well with experimental data for several materials with drastically
different elastic properties in tension and compression.

To the best of the present investigators' knowledge, the caly previous
analyses of plates laminated of bimodulus composite materials are all limited
to thin plates. Jones and MorganS considered cylindrical bending of a finite-
width cross-ply strip; Kincannon et al.® considered cross-ply elliptic plates.

Rectangular plates were treated by Bert et al.” using a closed-form solution




and by Reddy® using mixed finite elements.
Apparently the only previous analyses involving thick plates of bimodulus

material are those of Shapiro? using a stress-function elasticity approach for

isotropic circular plates and of Kamiyal!? using an energy approach for cylindrical
i bending of finite-width isotropic strips.

Of course, for thick plates laminated of ordinary (not bimodulus) materials,
there have been a number of analyses, such as those of Whitney!!, Whitney and
Pagano!?, and Turveyl!3 , for example. 1

The analyses presented here are believed to be the very first analyses of
thick plates that are finite in two directions and laminated of bimodulus com-

posite materials.

Formulation
The basic theory of laminated anisotropic thick plates used by Whitney
and Pagano!? is an extension of Reissner's theory for isotropic plates!“. It

is based upon the following assumed displacement field:

"

u(x,y,2) = u%(x,y) + zv, (x.¥)

v(x,y,2) = vO(x,y) + 20, (%5¥) (1)

w(xsy52) = wl(x,y)

Here x,y are rectangular coordinates in the plane of the plate, z is the
thickness-direction coordinate measured downward from the midplane of the
plate; u,v,w are the displacements in the respective x,y,z directions; u°.
vO.w° are the corresponding midplane displacements; and vy and wy are the
slopes in the xz and yz planes due to bending only.

Neglecting body forces, body moments, and surface shearing forces, the

equations of equilibrium can be written as

s i o e




Quy * Oy *Q%05 M +M -Q =0 (2)

M + M

1,X 6y o '

Here q is the normal pressure, ( ),x denotes a( )/3x,and
h/2

M) = [ (e, a2 (i=1,2.6)
/2

(3)
h/2

(Q,-0,) = J RORBE

Here h is the plate (laminate) thickness,and the so-called contracted sub-
script notation is employed to denote the stress components. Thus, o; and
g are inplane normal stresses in the x and y directions; og is the in-
plane shear stress associated with the x,y axes; and o, and o5 are the thick-
ness shear stresses in the yz and xz planes.

Assuming that the only plane of symmetry existing is in the plane of the

plate, the plate constitutive relations can be written as

N v Bes tiles
i . iJ 1] J (i,j=],296)
M Bis Dij ]l
(4)
Q | _ | KESuu  KiKsSus|]ew
QX KuKsqu Kgsss €s

The Aij’ Bij’ Dij’ Sij are the respective inplane, bending-inplane coupling,

bending or twisting, and thickness-shear stiffnesses defined as follows:

h/2
(A1j’81j'01j) > -h/2 (]’z’zz)oijkl dz (i9j=]92a6)
(5)
h/2
sij e -h/2 Qijkl dz (i’j'495)




Here Qijkz denotes the plane-stress reduced stiffness, where ij refers to

the position in the stress-strain-relation array (analogous to Egs. (4)), k
refers to the sign of the fiber-directicn strain (1 ~ +, 2 ~ =), and 2 is
the layer number.

The linear equations for the kinematics of deformation are
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Equations (1)-(6) plus those of Appendix A constitute the appropriate
theory, in differential-equation form, for the class of plates considered

here (linear, thick, laminated, anisotropic, bimodulus).

Closed-Form Solution for Cross-Ply Laminate

Here we consider the particular case of a cross-ply laminate, i.e., one
in which some of the layers are oriented along the x axis and the remainder
along the y axis. Then the terms with subscripts 16, 26, and 45 vanish from
the symmetric arrays in Eqs. (4). For bimodulus-material cross-ply laminates,
Eqs. (5) integrate as indicated in Appendix A and depend upon the neutral-
surface locations, Zx and Zy, as well as the Qijkl'

If it is tentatively assumed that the neutral-surface locations are in-
dependent of x and y, Egs. (2), (4), and (6) can be combined to yield the
following governing equations in terms of the midplane displacements (u°,v®,w°)

and bending slopes (wy and wx):

% (7)

0.0 0 ) T
[L"S]{u VoW ’wyth} = {0,0,q,0,0}




where [Lrs] is a symmetric linear differential operator matrix with the follow-
ing elements:

Liy = Andf + Aeed? 5 Liz = (Ara*Agsldd 5 L1z =0

Liv = (Bia*Beg)d,d) 5 Lis = Byydf + Bgedd 5 Lap = Aged? + Aypd?

L23 =0 ;5 Loy = BgedZ + 322d§ 3 Las =Ly 5 Laz=- K§555d§ x

KE Suud2 3 Ly = - KESyud

2
Y 3 L3s = - K5 Sssd, 3

Y

2
Luy = Dggd2 + Dzzd§ - KySyy 5 Lyg = (012+Dse}dxdy ;

Lss = D1ad2 + Dged? - KESss 5 d, = a( )/ax; dy = a( )/ay

For a plate hinged flexurally, but free tomove in a direction normal to
each edge, the boundary conditicns are
N(0.y) = Ny(ay) = 0 5 u?(x,0) = u®(x,b)
0 s} < =
v (0,y) = v(a,y) 3 Na(x,0) = Ny(x,b)
w’(0,y) = w’(a,y) 5 wo(x,0) = wo(x,b)
wy(osy) o wy(a’Y) = > Mz(xso) = MZ(X,b)
Mi(0,y) = Mi(a,y) =0 5 v (x,0) =y (x,b)

The criteria that the neutral-surface locations associated with the x

and y directions remain constant are as follows:

s? it WOE B eg + Zpy<2 0 (10)
o S -ty

s sg/Kz gl V?y/wy’y

XX (11)




The normal-pressure loading is taken to be sinusoidally distributed as

s T WY, A

q = q, sin ax sin By (12)

where a = n/a , B8 = w/b.

The governing equations (7) with pressure distribution given by Eq.

(12), boundary conditions (9), and neutral-surface location criteria (11) are é
all satisfied exactly in closed form by the following set of functions. |
u® = U cos ax sin By 4
v® = V sin ax cos By
w® = W sin ax sin gy (13)
Wy =Y sin ax cos 8y :
¥y X cos ax sin gy

Then differential equation set (7) reduces to algebraic form as
follows:

&g T
[CY'S]{U’V aw sY,X} = {0’0 aqo90 90}

Here [crs] is a symmetric matrix with coefficients

Cip = Aj1a2 + AgeB2 3 Cyp = (AjptAgg)aB 5 Ci3 =0
Ciy = (Byga+Bgg)aB ; Cys = Byja? + BgeB2
b Caz = Agga? + AppB2 3 Ca3 =0 3 Cpy = Bgga? + BpoB?
4
: 2 2 2
; C2s = Cyu 5 C33 = K5Sssa? + KySuuB2 5 Cay = KSyuB 3
E Cas = KESssa ; Cuy = Dgga? + Dy82 + KISy,

(D12#Dgg)aB 5 Css = Djja? + Dgga? + KiSss

(w)
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Finite-Element Analysis

Here we present a mixed finite-element model associated with Eqs. (1)-
(4) governing the bending of laminated, thick composite plates. The word
"mixed" implies that independent approximations are used for all of the
variables, Us VW and y . Using the thin-plate equations of layered

y
composite plates, and treating

w,x+wx=0,w,y+wy=0 (16)

as constraints, Reddy!” presented a variational formulation of Eqs. (1)-
(4). That is, the thick-plate theory can be interpreted as one resulting
from the thin-plate theory by treating the slope-displacement relations as
constraints. The Lagrange multipliers associated with these constraints are
found to be the thickness-shear stress resultants, Qx and Qy. The model
described here is essentially the same as in Ref. 17.

Suppose that the region occupied by the plate is given by aX(-h/2,h/2),
where Q denotes the middle plane (x-y). As noted earlier, the thickness
direction is integrated into the coefficients, Aij’ Bij’ and Dij' Hence, we
divide the plate into a finite number of elements, denoted by Qg+ Over
each element Qe, we assume that the variables UsVsWst s and wy are interpolated
by expressions of the form

e

x i
¢ = f Ni ¢q (17)

where ¢e denotes the restriction of a typical variable to Qg ¢; its value
at node i (of element Qe), and N, are the linearly independent interpolation
functions associated with the typical element. Since we are concerned here
with rectangular plates, the typical element is chosen to be the four-node

(n=4) quadr11ater'a1 element of the serendipity family.




Substituting expressions of the form (17)

11

for UsVoWsyy s and “’y into

the total potential energy associated with the case of a cross-ply laminate

ou av

3u 3V

-]?:JQ {Au(g—:) Ase( ) *2hi2 sr gy T PMes gy et 2( )
+ Ass(% Q(Bu?;;—x * Blzi%;y') Bea(g; + g;)(?_yx + a—:;(x)
+g—;'(3123:x Bzza:;) —(5112 B123 )+ Bee(‘a’f' iu)(w"" i,v?)
¥ 3%!(8122: Bzz-g—;’?) + Dll(i’&)z + Deg(%i)z
% 20123: %‘,X Des 3x ‘3‘,‘(! Dzz(i;;y-)z Dse(%y') Ass(" * Wx)z
A%(g—; + \oy)z} dx dy + JQ qw dx dy (18)
we obtain, for each element,
[(K®3(a%) = (F® (19)
where {2%} = {u?,v‘:,w?,wii,w;i}T, and
Kij = A11S] TR Asss}i,js ki3 = Alzs?g A SJ),’
K%g » 0, Kl B“s1J BGGS{J KlS = By,5] y - Beesﬁ
K2 = Azzs + AgsS) 1 KGl=0, K= 3665 + Byo sxy
k2$ = 8555’1.‘ + BZZS{J K33 = 1\55-,51J + Al,us{j, k34 = Asssf'.(g
K3$ = AMS{?, Kys = 01,8} T Dessy + AgsSS i
K‘;g = Dy,5] y + DgeS y KSS = DGSSiJ + Dzzs AL,L,s]J
iy jn @, dx dy, F§ =0, a =1,2,4,5, A, =KK. S .5 (a,8%4,5)
e
s%‘ . IQ Wy Uy dx dy (8.0%0,x,y), s3j = S?? (20)

e
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The element equations (19) are assembled in the usual manner, and

boundary conditions are applied before solving the equations.

Numerical Results

As the first example, we take the case of a homogeneous (single-layer)
plate of transversely isotropic bimodulus material. The plane of isotropy
is assumed to coincpide with the midplane of the plate, and the inplane
Poisson's ratio is assumed to be zero. Then the closed-form solution reduces
to the simplified form presented in Appendix B. Numerical results are pre-
sented in Tables 1 and 2.

Table 1. Comparison of Neutral-Surface Locations for
Transversely Isotropic Square Plate

Neutral-Surface Location Z
Et/Ec=Gzt/Gzc GZC/EC=0.1 0.3 0.5

e e ottt ————
e R A —————

Exact Closed-Form Solution:

0.5 - 0.08578 - 0.08578 - 0.08578
1.0 0 0 0
2.0 + 0.08578 + 0.08578 + 0.08578
Simplified Approximate Solution:
0.5 - 0.08579 - 0.08579 - 0.08579
1.0 0 0 0
2.0 + 0.08579 + 0.08579 + 0.08579
Mixed Finite-Element Solution:
0.5 - 0.08578 - 0.08578 - 0.08578
1.0 0 0 0
2.0 + 0.08578 + 0.08578 + 0.08578
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Table 2. Comparison of Maximum Deflections for Transversely
Isotropic Square Plate (h/b=0.1, K2z5/6)

Dimensionless Deflection chh3/qob“

Et/Ecsezt/Gzc GZC/EC=0.1 0.3 0.5

|

Exact Closed-Form Solution:

0.5 0.05348 0.04774 0.04660 |
1.0 0.03688 0.03283 0.03201
2.0 0.02674 0.02387 0.02330

Simplified Approximate Solution:

0.5 0.05004 0.04660 0.04591
1.0 0.03445 0.03202 0.03153 :
&k 0.02530 0.02342 0.02296 ]

Mixed Finite-Element Solution:

0.5 0.05329 0.04743 0.04626
1.0 0.03675 0.03261 0.03178
2.0 0.02664 0.02371 0.02313

emacm——
—

It is noted that the middle-surface location is independent of Gzc and

Gzt‘ The agreement among the results obtained by all three solutions is quite

good.

As examples of some actual bimodulus materials, aramid-cord/rubber and
polyester-cord/rubber are selected. The material properties used are listed in
Table 3. The data are based on test results of Patel et al.3, using the data-
reduction procedure of Model 2 in Ref. 4, except for the thickness-shear moduli,

which were estimated as explained in Appendix C.




Table 3. Elastic Properties for Two Tire-Cord/Rubber,
o Unidirectional, Bimodulus Composite Materials

Aramid/Rubber Polyester Rubber
Property and Units k=1 k=2 k=1 k=2
Longitudinal Young's modulus, GPa 3.58 0.0120 0.617 0.0369
Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106
; Major Poisson's ratio, dimensionlessb 0.416 0.205 0.475 0.185
Longitudinal-transverse shear modulus, GPa® 0.00370 0.00370 0.00262 0.00267 ]
Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475

i
——

2Fiber-direction tension is denoted by k=1, and fiber-direction compression by

i k=2.
bIt is assumed that the minor Poisson's ratio is given by the reciprocal ‘
cre]ation. 1
It is assumed that the longitudinal-thickness shear modulus is equal to this :

one.

Numerical results for single-layer rectangular plates with the fibers

oriented parallel to the x axis are given in Table 4, while those for cross- |
ply plates (stacking sequence as described in Appendix A) are listed in Table

5.

As can be seen in Tables 4 and 5, the agreement between the closed-form
and finite-element results for both neutral-surface position and deflection
is extremely good. Thus, it can be considered that the finite-element analysis
has been soundly validated, and can now be used for more complicated combina-
tions of loading, geometry, and boundary conditions not amenable to closed-
form solutions.

It is noted that the aramid-rubber plates, in both the single-ply and
cross-ply cases, have noticeably larger values of Zx than the polyester-

rubber plates. This result is undoubtedly due to the more pronounced bi-

modulus effect in the fiber-direction Young's modulus of the aramid-rubber.
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Table 4. Neutral-Surface Positions and Dimensionless Deflections
for Rectangular Plates of Single-Layer 0° Aramid-Rubber
and Polyester-Rubber, as Determined by Two Different
Methods (Thickness/Width, h/b=0.1t;K2=5/6)

Aspect Zx szzch3/qob“
Razo C.F* Pt B.F F.E* C.F o
Aramid-Rubber:
0.5 0.4453 0.4454 0.3304 - 0.3007 0.002544 0.002750
0.6 0.4452 0.4452 0.2941 - 0.2734 0.004560 0.004827
0.7 0.4447 0.4447 0.2564 - 0.2419 0.007393 0.007712
0.8 0.4440 0.4440 0.2220 - 0.2117 0.01105 0.01140
0.9 0.4431 0.4431 0.1923 - 0.1846 0.01545 0.01582
1.0 0.4420 0.4420 0.1671 - 0.1614 0.02046 0.02083
1.2 0.4394 0.4394 0.1285 - 0.1250 0.03160 0.03193
1.4 0.4363 0.4363 0.1015 - 0.09919 0.04313 0.04335
1.6 0.4328 0.4329 0.08228 - 0.08070 0.05406 0.05416
1.8 0.4292 0.4294 0.06838 - 0.06724 0.06390 0.06388
2.0 0.4253 0.4254 0.05813 - 0.05727 0.07250 0.07236
Polyester-Rubber:

0.5 0.3044 0.3045 0.1597 - 0.1234 0.001529 0.001971
0.6 0.3044 0.3045 0.1538 - 0.1245 0.002652 0.003265
0.7 0.3042 0.3044 0.1426 - 0.1198 0.004283 0.005075
0.8 0.3039 0.3041 0.1299 - 0.1124 0.006517 0.007487
0.9 0.3035 0.3037 0.1174 - 0.1041 0.009421 0.01055
1.0 0.3029 0.3031 0.1061 - 0.09586 0.01303 0.01430
1.2 0.3015 0.3018 0.08728 - 0.081M 0.02223 0.02367
1.4 0.2999 0.3001 0.07329 - 0.06941 0.03348 0.03492
1.6 0.2979 0.2982 0.06296 - 0.06042 0.04574 0.04703
1.8 0.2957 0.2960 0.05528 - 0.05356 0.05793 0.05897
2.0 0.2934 0.2936 0.04959 - 0.04828 0.06925 0.07003

*C.F. denotes closed-form solution; F.E. signifies finite-element solution.

T
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Table 5. Neutral-Surface Positions and Dimensionless Deflections
for Rectangular Plates of Two-Layer Cross-Ply Aramid-
Rubber and Polyester-Rubber, as Determined by Two Different
Methods (Thickness/Width, h/b=0.1; K2=5/6)
3 L
Aspe.Ct * Zx * * ZL * WEiZCh /qOb * £
Ratio C.F: F.E: C.F} F.E* c.F? F.E. |
Aramid-Rubber: j
0.5 0.4433  0.4431 - 0.06343 - 0.06223  0.002472  0.002576 ;
0.6 0.4427  0.4426 - 0.05478 - 0.05443  0.004388  0.004518 4
0.7 0.4418  (.4418 - 0.04794 . 0.04778  0.007072  0.007220 |
0.8 0.4407  0.4407 - 0.04247 - 0.04237  0.01054  0.01070 {
0.9 0.4396  (0.4396 - 0.03803 . 0.03795 0.01475  0.01490 !
1.0 0.4384  (.4334 - 0.03437 - (0.03430  0.01957 0.01972 ’
1.2 0.4356  0.4356 - 0.02833 . 0.02860  0.03043 0.03054
1.4 0.4326  0.4325 - 0.02470 . 0.02477  0.04185 0.04190
1.6 0.4292  0.4292 - 0.02160 - 0.02165  0.05282 0.05280
1.8 0.4257  p.4256 - 0.01922 - 0.01923  0.06277 0.06264
2.0 0.4219  .4219 - 0.01735 - 0.01734  0.07151 0.07137
Polyester-Rubber:
0.5 0.3650 0.3652 - 0.1285 - 0.1256 0.002539  0.002732 b
0.6 0.3644  0.3646 - 0.1178 - 0.1164 0.004527  0.004772 h
0.7 0.3638  0.3639 - 0.1097 - 0.1089 0.007288  0.007575 ;
0.8 0.3631  0.3631 - 0.1036 - 0.1031 0.01078 0.01109 :
0.9 0.3622  0.3622 - 0.09886 - 0.09859  0.01487 0.01519 ,
1.0 0.3613  0.3613 - 0.09526 - 0.09502  0.01933 0.01966
1.2 0.3593  0.3593 - 0.09001 - 0.09000  0.02846 0.02879 J
1.4 0.35717  0.3570 - 0.08660 - 0.08660  0.03674 0.03707 -
1.6 0.3546  0.3545 - 0.08430 - 0.08430  0.04356 0.04339
1.8 0.3519  0.3518 - 0.08267 - 0.08267  0.04890 0.04925
2.0 0.3491  0.3490 - 0.08150 - 0.08150  0.05301 0.05337

o=
——

*C.F. denotes closed-form solution; F.E. signifies finite-element solution.

L e | TR




Also, it is interesting to observe that there are only very slight differences

in Zx and deflection in going from a single layer to a cross-ply laminate.

This is in contrast to the behavior of the polyester - rubber results and in
considerable contrast to ordinary materials (which, of course have Zx =0
for the single-layer case). The most pronounced change in going from the
single-layer to the two-layer case is the drastic decrease in Zy for the :
aramid-rubber.
It should be cautioned that in the case of the closed-form solution, de- ;j
flections due to various sinusoidally distributed loadings cannot be super-

imposed for bimodulus-material plates. The reason superposition is not valid

here is that the necessary conditions for homogeneity of neutral-surface loca-

tions are not valid under superposition conditions, since, in general

2 Z,(,” w)((]))( (x,y) + Z,(,Z) w,((zz (x,y)
n

yA # constant

ben (3) *+ 9,20 ()

even though Zgl), Z£2)’ ... for the various individual Fourier components are
constants. However, the finite-element solution is not subject to these limi-
tations, since it provides for stepwise variation in neutral-surface location.

Fig. 1 shows results for both sinusoidally and uniformly distributed loadings.

Concluding Remarks §=

Both finite-element and closed-form solutions have been found for
thick, rectangular plates of single-layer and cross-ply laminates of bi-
modulus materials. Excellent agreement was obtained, and thus the finite-
element formulation of this problem is considered to have been validated

against an accurate benchmark.

|
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IM "S rn

The research reported here is currently being extended to (1) thermal
bending due to changes in midplane temperature and in gradient through the

thickness, and (2) free vibration.
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Appendix A: Derivation of the Plate Stiffnesses for a Two-
Layer Cross-Ply Laminate of Bimodulus Material

In laminates containing bimodulus materials, the results of evaluating
the integrals for the plate stiffnesses, Eqs. (5),are more complicated than
those for ordinary-material laminates, since the individual-layer plane-
stress-reduced stiffnesses depend upon the neutral-surface location. Here
we derive the expressions for the case of a two-layer, cross-ply laminate.
Each layer has the same thickness and the same bimodulus orthotropic elastic
properties with respect to the fiber direction. The bottom layer is denoted
as layer 1, i.e., 2 =1 in Qijk
the thickness-direction interval from z = 0 to z = h/2, where z is measured

X is oriented in the x direction, and occupies

position downward from the midplane. The top layer (2=2) is oriented in the
y direction and is located from z = - h/2 to z = 0. In the case considered,
it is assumed that the upper portion of the top layer (2=2) is in compression
(k=2 in Qijkl) in the fiber direction and that the lower portion of the top
layer is in tension (k=1), while the inner portion of the bottom layer (2=1)
is in compression (k=2) and the outer portion of this layer in tension (k=1).

Summarizing, the four regions are as follows:

Fiber-Direction

Layer Region Tension or Compression
2 =2 - h/2 to Zoy Compression (k=2)

g =2 zny to 0 Tension (k=1)

L =1 0 to 2y Compression (k=2)

2 =1 L - to h/2 Tension (k=1)

It is noted that it is assumed that the x-direction neutral-surface location

- 0, while the y-direction one (zny) is negative.




T

Thus, the integral for A.. in Egs. (5) is subdivided into four regions,

in each of which the plane-stress reduced stiffnesses Q. are constant.

ijke
: ny : : Znx h/z
Apih At z+ Q.- dz + Qes, . dz + Q,,,, dz
ij J_ ij22 J iji2 J ija1 J ij1
h/2 Zn.y 0 Z x
x (Qij11 4 1J22)(h/2) (@ 1321 d Qijll)znx i (Qijzz % Qijlz)zny (A1)

Introducing Zx = znx/h and Zy = zny/h, one obtains

Aij/h = (]/2)(Qijzz - Qijll) L (Qijzl' Qijll)zx b (Qijzz 5 Qisz)zy (A2)

In similar fashion, the next two integrals in Eqs. (5) become

4B1J/h2 = (]/2)(01311 S Q'IJZZ) + Z(QijZI = 'lJll)Zz (Q1J22 & QIJIZ)Zi’ (A3)
]ZD /h3 —(]/ZXQIJII Qijzz) 2 4(Qijzu ¥ 1,]11)Z3 (Qij21 i 1312)23 (A4)

The expression for Sij/h is the same as for Aij/h’ Eq. (A2).

To apply Eqs. (A2)-(A4) to a single-layer plate with the fibers oriented
in the x direction, it is necessary to merely set Zy = 0. In deriving these
equations, it was assumed that Zx > 0 and Zy < 0. In the event that the final
results obtained for Zx and Zy did not meet these conditions, obviously Egs.
(A2)-(A4) would not be valid,and it would become necessary to investigate

another of the other three possible cases:

Z,>0and Zy >
Z, <0 and Zy <0

in_OandZy?_O
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Fortunately, however, in all of the static problems treated here, the

F ' conditions for the case derived in this appendix are satisfied.

‘ Appendix B: Reductionof Closed-Form Solution for Single-
L Layer Transversely Isotropic Material

In order to obtain simple, concise expressions for the neutral-surface

R e

location and the deflection, the closed-form equations given in the body of
the paper are reduced to the special case of a square plate made of a trans-
versely isotropic bimodulus material with an inplane Poisson's ratio of zero.
Then
Ajy = A2 = A, Ay =0, Agg = A/2
Bll = Bzz = B, 312 = 0, BBG = 8/2
(81)
D13 = D23 =D, Dy, =0, Dgg = D/2

Suy = S55 =S, Sus =0

Now Egs. (15) reduce to the following, since B = a:

C11 = (3/2)Aa2, Cy3 = (1/2)Aa2, Cy3 =10

Clh = (]/Z)BGZ, C15 = (3/2)832’ Cji ~ cij’
| C22 = C11s C23 =0, Cay =Cyis5s Cz5 = Cyu,y (B2)
, Caz = 2K2Sa2, C3y = K2Sa, C35 = C34,
5 Cuy = (3/2)Da2 + K25, Cus5 = (1/2)Da2, Css5 = Cyy

The biaxial symmetry of this special case requires

MRS it gcald S

baa, 830, V’U, Y*x, an=Zny=Zn (83)

Using Eqs. (B2) and (B3) in the first two of Eqs. (14), one finds that

for this special case

Zox * 2y * B/A = 2z (84)
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Using the fourth equation of Eqs. (14), one obtains

4 - K2Sa
XV = 2087, Ja? + K7 (B5)

It is noted that the bending slope vanishes for both S = 0 and 1/S = 0.
Finally, the third of Egs. (14) yields

q
N = ETBT%E;TEW [+ 2(D-an)(a2/K25)] (B6)

It is seen that the quantity in front of the first bracket on the right side
of Eq. (B6) is equal to the deflection of a thin isotropic plate. The second
term inside the brackets is the fractional increase in deflection due to
thickness-shear deformation, which obviously increases as Gz is decreased.
The quantity D-an is the so-called reduced stiffness, first obtained for
laminated, isotropic thin plates by Pisterl!S.

For the present case, Eqs. (A2)-(A4) become

A/h =Q +2aQ , 4B/h% = - (1/2)aQ (1-422)
(B7)
120/h3 = § + 423aQ

Here

Q= (1/72)(Q*Q,) » 82 =0Q - Q, (8)

c

Combining Eqs. (B4) and (B7), one obtains the following quadratic
expression for Z:
2 = -(Q/n0) * [(00Q)" - (1/8)]"
Also

S/h = (1/2)(Gzc+Gzt) + 2(G, .-G

Zt)

2c

e R
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Appendix C: Method of Estimating Transverse-Thickness
Shear Moduli

In the tests reported by Patel et al.3,only inplane compliances were
measured. Thus, it is necessary to estimate the values for the thickness-
shear moduli, which are needed for the thick-plate analysis.

It is believed to be a reasonable engineering assumption to assume
that an individual composite-material layer is transversely isotropic with
the plane of isotropy being the cross-sectional plane, i.e., the plane normal
to the fibers. Thus, it follows that the longitudinal-thickness shear modulus
(613) is equal to the inplane (longitudinal-transverse) shear modulus (G,,).

Estimation of the other thickness-shear modulus is more complicated. One
can use the well-known isotropic relation for the transverse-thickness shear
modulus Gp3 in terms of the thickness Young's modulus E; and transverse-

thickness Poisson's ratio v,3 provided the latter two quantities are known:

Gk * Esk/[2(1+v23k)] (c1)

In view of the transverse-isotropy assumption mentioned above, it can
be assumed that E3k = Ezk’ which was obtained from the inplane tests.
Foyel® presented a relation for v,; which can be rewritten in the

following form, which is more convenient for the present purpose:

[(Vm/Em) = (\’f/Ef)] Vm(]'\’m)

Vask * Viak T T Ted v (€2)
| —_— | R e 4
Em(i-vf} Ee Ve EjE¢

It is noted that Ref. 3 provided data for E., E , and V It is

f' m f°
reasonable to use a value of 0.499 for Vm of rubber. Thus, the only unknown

quantity on the right side of Eq. (C2) is Ves which could be computed from




o . s i

, which is known to be

the following rule-of-mixtures expression for Vi2k

very accurate for polymer-matrix composites:
Vigg = Velle t \)m(]-Vf) (C3)

The rule-of-mixtures expression for the longitudinal Young's modulus

is also known to be accurate for polymer-matrix composites:
Erk = EndVe * Eqll-Ve) (C4)

Unfortunately, however, for the data of Ref. 3, the measured values
of Elt (tension) were higher than predicted by Eq. (C4). Thus, it was de-
cided to use Eq. (C4) to obtain an effective fiber volume fraction V;, and
then to use this effective value to predict Efc (compression) and Vet and
Ve However, using either Vf or V; in Eq. (C3), one obtains negative Vet
and Ver values, which are not reasonable physically. Thus, it was assumed
that due to the loose nature of the cord, that it was not restrained by the

matrix. Thus, instead of obtaining VK from Eq. (C3), it was obtained from

A%

*
fk = Viak/ Vs el

Sample calculations for aramid-rubber in compression are as follows.

From Eq. (C4) for k = t:

*
Ve = (Elt-Em)/(Eft-Em) = (3.58 - 0.0080)/(24.8 - 0.0080) = 0.144

Then, using Eq. (C4) for k = c:

* *
Epe = [Eje- E,(1-Ve)1/ve = [0.00120 - 0.0080(0.856)1/0.144

0.0358 GPa




From Eq. (C5) with k = ¢,

*
= vuc/Vf = 0.205/0.144 = 1.42

Ve

Using Eq. (C2), one obtains v = 0,202

23C

Finally, from Eq. (C1), G,)3c = 0.00499 GPa
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